exploit-db-mirror/exploits/windows/dos/39232.txt
Offensive Security ed0e1e4d44 DB: 2018-09-25
1979 changes to exploits/shellcodes

Couchdb 1.5.0 - 'uuids' Denial of Service
Apache CouchDB 1.5.0 - 'uuids' Denial of Service

Beyond Remote 2.2.5.3 - Denial of Service (PoC)
udisks2 2.8.0 - Denial of Service (PoC)
Termite 3.4 - Denial of Service (PoC)
SoftX FTP Client 3.3 - Denial of Service (PoC)

Silverstripe 2.3.5 - Cross-Site Request Forgery / Open redirection
SilverStripe CMS 2.3.5 - Cross-Site Request Forgery / Open Redirection

Silverstripe CMS 3.0.2 - Multiple Vulnerabilities
SilverStripe CMS 3.0.2 - Multiple Vulnerabilities

Silverstripe CMS 2.4 - File Renaming Security Bypass
SilverStripe CMS 2.4 - File Renaming Security Bypass

Silverstripe CMS 2.4.5 - Multiple Cross-Site Scripting Vulnerabilities
SilverStripe CMS 2.4.5 - Multiple Cross-Site Scripting Vulnerabilities

Silverstripe CMS 2.4.7 - 'install.php' PHP Code Injection
SilverStripe CMS 2.4.7 - 'install.php' PHP Code Injection

Silverstripe Pixlr Image Editor - 'upload.php' Arbitrary File Upload
SilverStripe CMS Pixlr Image Editor - 'upload.php' Arbitrary File Upload

Silverstripe CMS 2.4.x - 'BackURL' Open Redirection
SilverStripe CMS 2.4.x - 'BackURL' Open Redirection

Silverstripe CMS - 'MemberLoginForm.php' Information Disclosure
SilverStripe CMS - 'MemberLoginForm.php' Information Disclosure

Silverstripe CMS - Multiple HTML Injection Vulnerabilities
SilverStripe CMS - Multiple HTML Injection Vulnerabilities

Apache CouchDB 1.7.0 and 2.x before 2.1.1 - Remote Privilege Escalation
Apache CouchDB 1.7.0 / 2.x < 2.1.1 - Remote Privilege Escalation

Monstra CMS before 3.0.4 - Cross-Site Scripting
Monstra CMS < 3.0.4 - Cross-Site Scripting (2)

Monstra CMS < 3.0.4 - Cross-Site Scripting
Monstra CMS < 3.0.4 - Cross-Site Scripting (1)
Navigate CMS 2.8 - Cross-Site Scripting
Collectric CMU 1.0 - 'lang' SQL injection
Joomla! Component CW Article Attachments 1.0.6 - 'id' SQL Injection
LG SuperSign EZ CMS 2.5 - Remote Code Execution
MyBB Visual Editor 1.8.18 - Cross-Site Scripting
Joomla! Component AMGallery 1.2.3 - 'filter_category_id' SQL Injection
Joomla! Component Micro Deal Factory 2.4.0 - 'id' SQL Injection
RICOH Aficio MP 301 Printer - Cross-Site Scripting
Joomla! Component Auction Factory 4.5.5 - 'filter_order' SQL Injection
RICOH MP C6003 Printer - Cross-Site Scripting

Linux/ARM - Egghunter (PWN!) + execve(_/bin/sh__ NULL_ NULL) Shellcode (28 Bytes)
Linux/ARM - sigaction() Based Egghunter (PWN!) + execve(_/bin/sh__ NULL_ NULL) Shellcode (52 Bytes)
2018-09-25 05:01:51 +00:00

47 lines
No EOL
2.7 KiB
Text

Source: https://code.google.com/p/google-security-research/issues/detail?id=594
Heap corruption buffer underflow in devenum.dll!DeviceMoniker::Load()
There exists a buffer underflow vulnerability in devenum.dll!DeviceMoniker::Load when attempting to null terminate a user supplied string. The function as it exists on Windows 7 x86 is implemented as follows:
signed int __stdcall CDeviceMoniker::Load(CDeviceMoniker *this, struct IStream *a2)
{
struct IStream *v2; // esi@1
signed int v3; // edi@1
const unsigned __int16 *v4; // ebx@2
char v6; // [sp+8h] [bp-4h]@1
v2 = a2;
v3 = a2->lpVtbl->Read(a2, &a2, 4, (ULONG *)&v6); // read a 4 byte user controlled length
if ( v3 >= 0 )
{
v4 = (const unsigned __int16 *)operator new[]((unsigned int)a2); // allocate length
if ( v4 )
{
v3 = v2->lpVtbl->Read(v2, (void *)v4, (ULONG)a2, (ULONG *)&v6); // read data into new buffer
if ( v3 >= 0 )
{
v4[((unsigned int)a2 >> 1) - 1] = 0; // BAD BAD BAD
v3 = CDeviceMoniker::Init(this, v4);
}
operator delete[]((void *)v4);
}
else
{
v3 = -2147024882;
}
}
return v3;
}
The issue comes in when we specify a length of 1 with the first read. A buffer of length 1 will be allocated and 1 byte will be read into it. But, when the code goes to NULL terminate this buffer it divides the length by 2 and subtracts 2 (v4 is a wchar_t) leading to "\x00\x00" being written 2 bytes before the allocated buffer.
This object "device.1" or {4315D437-5B8C-11D0-BD3B-00A0C911CE86} is reachable from any bit of software that performs an IPersistStream::Load on an arbritrary object. This vulnerable object is also reachable from any bit of software performing an OleLoad(IID_IOleObject) call with an with an attacker controlled CLSID -- as is the case in Office.
In the attached Word Document PoC the OLE object StdObjLink or {00000300-0000-0000-c000-000000000046} is embedded with data pointing to the device.1 object. The StdObjLink supports IOleObject and IPersistStorage interfaces. When a user single clicks the object in the document an OleLoad call will load the StdObjLink object and call its IPersistStorage::Load (ole32!CDefLink::Load()) method. StdObjLink will then read the device.1 CLSID from the \x01Ole stream and call OleLoadFromStream with an interface ID of IMoniker. This call will then result in device.1 being loaded and the IPersistStream::Load() (devenum!DeviceMoniker::Load()) method being called.
The DeviceMoniker::Load() method should limit the user supplied size to sane values that are 2 byte aligned.
Proof of Concept:
https://github.com/offensive-security/exploitdb-bin-sploits/raw/master/bin-sploits/39232.zip